Mullins Molecular Retrovirology Lab

  • Department of Microbiology
  • School of Medicine
  • University of Washington
University of Washington/Fred Hutch Center for AIDS Research

Citation Information

Smith KN, Mailliard RB, Piazza PA, Fischer W, Korber BT, Fecek RJ, Ratner D, Gupta P, Mullins JI, Rinaldo CR (2016). Effective Cytotoxic T Lymphocyte Targeting of Persistent HIV-1 during Antiretroviral Therapy Requires Priming of Naive CD8+ T Cells. mBio (ePub ahead of print). (pubmed) (doi)

Abstract

Curing HIV-1 infection will require elimination of persistent cellular reservoirs that harbor latent virus in the face of combination antiretroviral therapy (cART). Proposed immunotherapeutic strategies to cure HIV-1 infection include enhancing lysis of these infected cells by cytotoxic T lymphocytes (CTL). A major challenge in this strategy is overcoming viral immune escape variants that have evaded host immune control. Here we report that naive CD8(+) T cells from chronic HIV-1-infected participants on long-term cART can be primed by dendritic cells (DC). These DC must be mature, produce high levels of interleukin 12p70 (IL-12p70), be responsive to CD40 ligand (CD40L), and be loaded with inactivated, autologous HIV-1. These DC-primed CD8(+) T cell responders produced high levels of gamma interferon (IFN-γ) in response to a broad range of both conserved and variable regions of Gag and effectively killed CD4(+) T cell targets that were either infected with the autologous latent reservoir-associated virus or loaded with autologous Gag peptides. In contrast, HIV-1-specific memory CD8(+) T cells stimulated with autologous HIV-1-loaded DC produced IFN-γ in response to a narrow range of conserved and variable Gag peptides compared to the primed T cells and most notably, displayed significantly lower cytolytic function. Our findings highlight the need to selectively induce new HIV-1-specific CTL from naive precursors while avoiding activation of existing, dysfunctional memory T cells in potential curative immunotherapeutic strategies for HIV-1 infection.