Mullins Molecular Retrovirology Lab

  • Department of Microbiology
  • School of Medicine
  • University of Washington
University of Washington/Fred Hutch Center for AIDS Research

Citation Information

Cao J, McNevin J, McSweyn M, Liu Y, Mullins JI, McElrath MJ (2008). Novel cytotoxic T-lymphocyte escape mutation by a three-amino-acid insertion in the human immunodeficiency virus type 1 p6Pol and p6Gag late domain associated with drug resistance. Journal of virology, 82(1), 495-502. (pubmed)

Abstract

Cytolytic T lymphocytes (CTL) play a major role in controlling human immunodeficiency virus type 1 (HIV-1) infection. To evade immune pressure, HIV-1 is selected at targeted CTL epitopes, which may consequentially alter viral replication fitness. In our longitudinal investigations of the interplay between T-cell immunity and viral evolution following acute HIV-1 infection, we observed in a treatment-naïve patient the emergence of highly avid, gamma interferon-secreting, CD8(+) CTL recognizing an HLA-Cw*0102-restricted epitope, NSPTRREL (NL8). This epitope lies in the p6(Pol) protein, located in the transframe region of the Gag-Pol polyprotein. Over the course of infection, an unusual viral escape mutation arose within the p6(Pol) epitope through insertion of a 3-amino-acid repeat, NSPT(SPT)RREL, with a concomitant insertion in the p6(Gag) late domain, PTAPP(APP). Interestingly, this p6(Pol) insertion mutation is often selected in viruses with the emergence of antiretroviral drug resistance, while the p6(Gag) late-domain PTAPP motif binds Tsg101 to permit viral budding. These results are the first to demonstrate viral evasion of immune pressure by amino acid insertions. Moreover, this escape mutation represents a novel mechanism whereby HIV-1 can alter its sequence within both the Gag and Pol proteins with potential functional consequences for viral replication and budding.